Noninvasive visualization of human dopamine dynamics from PET images
نویسندگان
چکیده
We recently introduced strategies for extracting temporal patterns of brain dopamine fluctuations from dynamic positron emission tomography (PET) data using the tracer [11C]-raclopride. Each of our methods yields a collection of time-concentration curves for endogenous dopamine. Given a spatially dense collection of curves (i.e., one at every voxel in a region of interest), we produce image volumes of dopamine (DA) concentration, DA(X, t), at multiple voxel locations and each time-frame. The volume over time-frames constitutes a 4D dataset that can be thought of as a DA "movie". There are a number of ways to visualize such data. Viewing cine loops of a slice through the DA volume is one way. Creating images of dopamine peak-time, Tpeak(X), derived from a movie, is another. Each visualization may reveal spatio-temporal patterns of neurotransmitter activity heretofore unobservable. We conducted an initial validation experiment in which identical DA responses were induced by an identical task, initiated at different times by the same subject, in two separate PET scans. A comparison of the resulting Tpeak(X) images revealed a large contiguous cluster of striatal voxels, on each side, whose DA timing was consistent with the relative timing of the tasks. Hence, the DA movies and their respective peak-time images were shown to be new types of functional images that contain bonafide timing information about a neurotransmitter's response to a stimulus.
منابع مشابه
Putative Binding Sites of Dopamine and Arachidonoyl Dopamine to Beta-lactoglobulin: A Molecular Docking and Molecular Dynamics Study
Because of participation in many aspects of human life, and due to oxidation-sensitive characteristics of dopamine (DA) and arachidonoyl dopamine (AA-DA), the necessity of biocompatible carrier to keep them against oxidation is of importance. In this work, we explored the putative binding sites of DA and AA-DA to -lactoglobulin (BLG) as potent carrier. Docking results identified the binding si...
متن کاملSubstituted benzamides as ligands for visualization of dopamine receptor binding in the human brain by positron emission tomography.
Two substituted benzamides, FLB 524 and raclopride, were labeled with 11C and examined for their possible use as ligands for positron emission tomography (PET)-scan studies on dopamine-2 (D-2) receptors in the brains of monkeys and healthy human subjects. Both ligands allowed the in vivo visualization of D-2 receptor binding in the corpus striatum caudate nucleus/putamen complex in PET-scan ima...
متن کاملIn vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft.
UNLABELLED Vascular endothelial growth factor (VEGF), released by tumor cells, is an important growth factor in tumor angiogenesis. The humanized monoclonal antibody bevacizumab blocks VEGF-induced tumor angiogenesis by binding, thereby neutralizing VEGF. Our aim was to develop radiolabeled bevacizumab for noninvasive in vivo VEGF visualization and quantification with the single gamma-emitting ...
متن کاملCreating Dynamic Images of Short-lived Dopamine Fluctuations with lp-ntPET: Dopamine Movies of Cigarette Smoking
We describe experimental and statistical steps for creating dopamine movies of the brain from dynamic PET data. The movies represent minute-to-minute fluctuations of dopamine induced by smoking a cigarette. The smoker is imaged during a natural smoking experience while other possible confounding effects (such as head motion, expectation, novelty, or aversion to smoking repeatedly) are minimized...
متن کاملQAV-PET: A Free Software for Quantitative Analysis and Visualization of PET Images
Quantitative Analysis and Visualization of PET Images (QAV-PET) is an opensource software implemented in the popular MATLAB coding environment that allows easy, intuitive, and efficient visualization and quantification of multimodal medical images. In particular, the software is well suited for PET-CT as well as MRI-PET images. It allows multi-modal images to be viewed simultaneously which allo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- NeuroImage
دوره 51 1 شماره
صفحات -
تاریخ انتشار 2010